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ABSTRACT 

 

Two thermo-mechanical models based on different elastic-visco-plastic constitutive laws are 

applied to simulate temperature and stress development of a slice through the solidifying shell of 

0.27%C steel in a continuous casting mold under typical commercial operating conditions with 

realistic temperature dependant properties. A general form of the transient heat equation, 

including latent-heat from phase transformations such as solidification and other temperature-

dependent properties, is solved numerically for the temperature field history. The resulting 

thermal stresses are solved by integrating the elastic-visco-plastic constitutive laws of Kozlowski 

[1] for austenite in combination with the Zhu power-law [2] for delta-ferrite with ABAQUS [3] 

using a user-defined subroutine UMAT [4], and the Anand law for steel [5,6]  using the 

integration scheme recently implemented in ANSYS [7]. The results from these two approaches 

are compared and CPU times are benchmarked. A comparison of one-dimensional constitutive 
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behavior of these laws with experimental tensile test data [8,9] and previous work [10] shows 

reasonable agreement for both models, although the Kozlowski – Zhu approach is much more 

accurate for low carbon steels.  The thermo-mechanical models studied here are useful for 

efficient and accurate analysis of steel solidification processes using convenient commercial 

software.  
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1. Introduction  

 

Many manufacturing and fabrication processes such as foundry shape casting, continuous casting 

and welding have common solidification phenomena. Probably one of the most important and 

complex among these is continuous casting, which is used to produce over 90% of the steel in the 

world today. Although the quality of continuous-cast steel is constantly improving, there is 

always incentive to lower the amount of defects and to improve productivity. Many of the more 

important defects that plague the continuous casting process are cracking problems.  Many of 

these cracking problems are related to mismatch between solidification shrinkage and mold taper, 

that causes interfacial gaps and reduced heat flow between the shell and mold, leading to locally 

hot and thin parts of shell.  These often cause transverse stresses, leading to longitudinal cracks at 

the meniscus, and breakouts due to ferrostatic pressure from the liquid phase applied to the newly 

solidified shell at mold exit [11,12] 

Many of these phenomena occur during the early stages of solidification in the mold. Accurate 

determination of temperature, deformation and stress distributions during this time is important 

for correct prediction of the taper to avoid these cracking problems, in addition to understanding 



other cracks, surface defects, and quality problems in the continuous casting of steel and other 

processes.   

The high cost of plant experiments under the harsh operating steel plant conditions makes it 

appropriate to use all available methods in simulating, optimizing, and designing this process. 

Although continuous casting has been subject to many computational models, the complexity of 

the phenomena, including temperature, strain-rate, and phase-transformation-dependent 

constituitive behavior, make it difficult to model accurately.  Improvements to the process to 

avoid cracks, such as optimizing mold taper designs, demand quantitative models that can make 

accurate predictions of thermal stress and strain during solidification. 

The constitutive models used in previous work to investigate thermal stresses during continuous 

casting first adopted simple elastic-plastic laws [13,14,15].  Later, separate creep laws were added 

[16,17]. With the rapid advance of computer hardware, more computationally challenging elastic-

viscoplastic models have been used [2,4,18,19,20,21] which treat the phenomena of creep and 

plasticity together since only the combined effect is measurable. Most previous models adopt a 

Langrangian description of this process with a fixed mesh, although an alternative mechanical 

model based on Eularian-Langrangian description has been proposed recently [10,21]. Similarly, 

the integration of viscoplastic laws ranges from easy-to-implement explicit methods [22,23], to 

robust but complex implicitly based algorithms [2,4,10,20]. 

It is a considerable challenge to apply these previous in-house FE models to solve realistic 

problems, which demand the incorporation of other important phenomena such as contact, 

thermal-mechanical coupling, and three-dimensional complexities.  On the other hand, the easy-

to-use commercial finite-element packages are now fully capable of handling these related 

phenomena, having rich element libraries, fully imbedded pre- and post- processing capabilities, 

advanced modeling features such as contact algorithms, and can take full advantage of parallel-

computing capabilities.  



The work of Koric et al [4,24,25] implemented a robust local viscoplastic integration schemes 

from an in-house code CON2D [2,11,12,20] into the commercial finite element package 

ABAQUS via its user defined material subroutine UMAT including the special treatment of 

liquid/mushy zone. This opened the door for the realistic computational modeling of complex 

steel solidification processes with ABAQUS [24,25] based on the Kozlowski III viscoplastic law 

for austenite, and the Zhu enhanced power law for delta ferrite phase [2].  The thermal-

mechanical predictions of this model were based on measured tensile-test and creep data and have 

been rigorously validated against analytical solutions, a reliable in-house code [4], and with plant 

measurements [24].   

Another finite-element commercial package ANSYS has recently implemented a different 

viscoplastic material, originally proposed by Anand [5] and Brown et al. [6] for the hot working 

of metals.  Huespe et al [10] compared these two visco-plastic constitutive models of steel and 

concluded that the Kozlowski model was slightly more accurate and convenient than the Anand 

model.  However, that study considered only one steel carbon content, used an in-house code with 

limited features and availability, and did not compare execution times. 

The object of this article is to compare temperature and stress results from the Anand material 

model in ANSYS against those of the Kozlowski / Zhu material model using ABAQUS.  In this 

work, a real world simulation of a typical continuous casting process is performed with both 

codes using realistic temperature-dependant properties on a simple slice domain. To enable a fair 

comparison of the crucial thermo-mechanical results developing during steel solidification using 

the different constitutive models, other important phenomena such as complex mold geometries, 

contact between the mold and strand with gap dependant conductivity, ferrostatic pressure, mold 

taper etc. are avoided in this paper, although they are being modeled with both of these general 

purpose codes in related work.  

 

 



2. Thermal Governing Equations  

 

Using an uncoupled approach, the heat conduction equation is solved first in a fixed-mesh 

domain that initially contains only liquid. The resulting temperature solution is then input to the 

subsequent mechanical analysis.  The local form of the transient energy equation is given in 

equation (1), [23]. 

 

( )H(T) k(T) T
t

⎛ ⎞∂
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along with boundary conditions: 

 

Prescribed temperature on AT  
ˆT T( , t)= x  

Prescribed surface flux on Aq  ( ) ˆk T q( , t)− ⋅ =n x∇     (1a) 

Surface convection on Ah  ( )k T h(T T )∞− ⋅ = −∇ n  

 

Whereρ is density, k is isotropic temperature dependant conductivity, H is temperature dependant 

enthalpy, which includes the latent heat of solidification. T̂  is a fixed temperature at the 

boundary AT, q̂  is prescribed heat flux at the boundary Aq, h is film convection coefficient 

prescribed at the boundary Ah where T∞ is  the ambient temperature, and n is the unit normal 

vector of the surface of the domain. 

 

 



3. Mechanical Governing Equations 

 

The strains which dominate thermo-mechanical behavior during solidification are on the order of 

only a few percent, or cracks will form [26].  Thus, the assumption of small strain is adopted in 

this work.  Several previous solidification models [2,17,20,21] confirm that the solidified metal 

undergoes only small deformation during initial solidification in the mold. With displacement 

spatial gradient, /= ∂ ∂u u x∇  being small, : 1≈u u∇ ∇ and the linearized strain tensor is thus 

[27]: 
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where Cauchy stress tensor is identified with the nominal stress tensor σ  , and b  is the body 

force density with respect to initial configuration. 
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The boundary conditions are: 
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where prescribed displacements û  on boundary surface portion Au, and boundary surface 

tractions Φ  on portion AΦ define a quasi-static boundary value problem.  The rate representation 

of total strain in this elastic-viscoplastic model is given by: 



 

thieel εεεε ++=          (4) 

 

where el ie th, ,ε ε ε are the elastic, inelastic (plastic + creep), and thermal strain rate tensors 

respectively.  Stress rate σ depends on elastic strain rate, and for a linear isotropic material with 

negligible large rotations, is given by equation (5) in which “:” represents inner tensor product.  

 

ie th:( )= − −Dσ ε ε ε          (5) 

 

D  is the fourth order isotropic elasticity tensor given by equation (6). 

 

B
22 (k )
3

= μ + − μ ⊗D I I I         (6) 

 

Here B, kμ are the shear modulus and bulk modulus respectively and are in general functions of 

temperature, while ,I I  are fourth and second order identity tensors and “⊗ ” denotes outer 

tensor product.  

 

 

3.1 Viscoplastic Strain Models  

 

Viscoplastic strain includes both strain-rate independent plasticity and time dependant creep. 

Creep is significant at the high temperatures of the solidification processes and is 

indistinguishable from plastic strain [20]. Kozlowski et al [1] proposed a unified formulation with 



the following functional form to relate inelastic strain to stress, temperature, strain rate, and 

carbon content in the austenite phase of steel. 

 

ie ief ( , T, , %C)ε = σ ε         (7) 

 

the equivalent inelastic strain-rate ieε is a function of equivalent stressσ , temperature T, 

equivalent inelastic strain ieε , and steel grade defined by its carbon content %C. 

 

 

ij ij
3 ' '
2
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 σ'  is a deviatoric stress tensor defined in equation (9). 

 

ij ij kk ij
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3

σ = σ − σ δ          (9) 

 

The particular model below was chosen to match tensile test measurements of Wray [9] and creep 

test data of Suzuki et al [28] for plain carbon steel in the austenite phase. 
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Q is activation constant, and 1 2 3 Cf , f , f , f are empirical functions of temperature or steel-grade, 

equivalent stress σ is given in MPa, and temperature T in K.  

To simulate the delta-ferrite phase of steel, a power-law constitutive model, was proposed by Zhu 

[2] which generates the much higher creep rates experienced in this body-centered cubic phase, 

relative to the strong, face-centered cubic austenite phase. This constitutive model, given in 

equation (10a) was based on tensile test measurements by Wray [8].  It is applied in the solid 

whenever the volume fraction of ferrite is more than 10%. Otherwise, equation (10) is applied. 

This simple rule was preferred over a mixture rule based on phase fraction, because creep in the 

delta-ferrite phase dominates the mechanical behavior if this phase is continuous. The volume 

fractions of each phase are calculated from an iron-carbon phase diagram adjusted for other 

alloying components (1.52%Mn, 0.34%Si, 0.015%S, and 0.012%P), as implemented in the in-

house code, CON2D [20]. 
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    (10a) 

Again equivalent stress σ is given in MPa, and temperature T in K in equation (10a). 

A different viscoplastic model for steel at high temperature was proposed by Anand [5] and 

Brown at el. [6]. Like the Kozlowski model, there is no explicit yield surface, as the instantaneous 

material response depends only on its current state. A single scalar variable s, called the 

deformation resistance, is used to represent the isotropic resistance to inelastic strain. The 

constitutive equation is given in equation (11). 
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The evolution equations for s are  
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where: 

 

s     [Pa]  deformation resistance  

QA          [K] activation energy over gas constant for Anand’s material  

AA [1/sec] pre-exponential factor  

ξ   multiplier of stress  

m  strain rate sensitivity of stress  

ho [Pa] hardening/softening constant  

s  [Pa] saturation value for s 

n  strain rate sensitivity of saturation  

a  strain rate sensitivity of hardening or softening  

 

In addition, an initial value for deformation resistance so must be defined.  



Using the experimental data of Wray [9], Anand [5] estimated the parameters for carbon steel in a 

carbon content range 0.05-0.5 %C. The current Anand model implemented in ANSYS has been 

slightly modified from the original with the addition of a hyperbolic sine functional form of the 

constitutive equation and exponential hardening behavior. The standard material constants used 

for this model in this work are listed in Table 1.  Brown et al. [6] proposed the initial value for 

deformation resistance so to depend on temperature, while the initial work of Anand  [5] defined 

so to vary in the range of 35-52 MPa, depending on both temperature and strain rate. No 

temperature or composition dependence of any of these model parameters is currently available in 

ANSYS, so the average value of 43 MPa is chosen for so following the work of Huespe at al. 

[10].  

The Kozlowski model, on the other hand, has no adjustable parameters.  For lower-carbon steels 

involving delta-ferrite, however, the Kozlowski model for austenite should be combined with a 

separate power law equation (10a) for temperatures at which delta-ferrite is present.  Details of 

the complete phase-dependent constitutive equations are given elsewhere [2,30].   

The steels considered in this work are assumed to harden isotropically, so the von Mises loading 

surface, associated plasticity, and normality hypothesis of the Prandtl-Reuss flow law, equation 

(14), [29] is used to calculate visco-plastic strain components .  
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3.2 Thermal Strain 

 



Thermal strains thε  arise due to volume changes caused by both temperature differences and 

phase transformations, including solidification and solid-state phase changes between crystal 

structures, such as austenite and ferrite.   
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whereα  is temperature dependant coefficient of thermal expansion, 0T is an important reference 

temperature and ijδ is Kronecker’s delta. The choice of To is arbitrary, but it significantly affects 

the associated α function.  

4. Local Time Integration of the Inelastic Constitutive Models 

 

Owing to the highly strain-dependant inelastic responses, a robust integration scheme is required 

to integrate either the Kozlowski or Anand equations over a generic time increment tΔ .  The 

system of ordinary differential equations defined at each material point by the Kozlowski model 

equation (10) or the Zhu power law model equation (10a) is converted into two “integrated” 

scalar equations by the Euler backward method and then solved using a special bounded Newton-

Raphson method [2,4,30]. Details of this local integration scheme can be found at [2,4,30] along 

with the derivation of the Jacobian consistent with this method.  

Similarly, ANSYS uses the Euler-backward scheme to integrate equations (11) and (12), [7].  The 

details of this local integration scheme that is built into ANSYS and specially optimized for the 

Anand model are not publicly available.  

The solution obtained from this “local” integration step from all material (gauss) points is used to 

update the global finite-element equilibrium equations, which are solved using the Newton-

Raphson based nonlinear finite-element procedures in ABAQUS or ANSYS [3,7].  



 

5. Comparison of constitutive models with experimental data  

 

The two constitutive models were first evaluated for spatially-uniform conditions, by simply 

integrating the equations with a local method.  Fig. 1 compares the calculated tensile curves with 

experimental data of Wray [9] for different carbon contents.  The Kozlowski model correctly 

captures the slight softening effect of increasing carbon content for this fully-austenitic condition.  

Lacking any dependency on steel grade, the Anand model is represented with a single curve, 

which underestimates stress for the low and mild carbon content steels, and underestimates work 

hardening, as indicated by the flatness of the curves.  

Fig. 2 compares the stresses at 5 pct strain measured by Wray [8] at different temperatures to 

those predicted with the Kozlowski austenite model or Zhu power law for delta ferrite and the 

Anand model.  Both model systems exhibit the correct drop in stress when integrated at lower 

constant strain rate. The experiments and Kozlowski / Zhu model predictions in this figure both 

show that delta-ferrite, which forms in low carbon steels at higher temperatures, is much weaker 

than austenite.  This important effect of phase explains the lower stress measured in feritic Si-

steel at lower temperature, while the ultra-low carbon steel and Si-steel show similar stresses in 

the fully-feritic region above 1400 oC.  The Anand model fails to capture this significant change 

in mechanical behavior of low carbon steel shells containing delta-ferrite.  

For the 1030 steel, Huespe et al. [10] showed that the Kozlowski model has a generally better fit 

with available experimental data of Suzuki [28], while the Anand model showed a slightly better 

agreement with experimental data of Wray [9].  However, due to the uncertainty of so and lack of 

dependency on carbon content %C in the Anand model, it was concluded in that work that the 

Kozlowski model is better. A recent survey of various constitutive models of steel at elevated 

temperature conducted by Pierer et al [31] has found that the Kozlowski model produces the 

closest match with experimental steel solidification force-elongation curves. Additional 



information on these models, including further comparison with experimental measurements can 

be found in the following papers: [1,5,6,10,31,32] 

 

6. Analysis of solidifying shell in continuous casting mold 

 

In many solidification processes, such as the continuous casting of steel, one dimension of the 

casting is much longer than the others, and is otherwise unconstrained.  In this case, it is quite 

reasonable to apply a condition of generalized plane strain in the long (axial) direction (z), and to 

solve a two-dimensional thermal stress problem in the transverse (x-y) plane.  This condition 

reasonably allows a two-dimensional transient mechanical computation in the plane section to 

produce the complete three-dimensional stress state in the casting. While generalized-plane-strain 

elements are available in ABAQUS, the current implementation of so called visco elements, 

which only works with Anand’s material in ANSYS, does not support generalized plane strain. 

Therefore, this comparative investigation employs a simple plane-strain implementation in both 

codes.   

The domain adopted for this problem is a thin slice through the shell thickness given in Figure 3.  

For the heat conduction computation, the high Peclet number (Vc L ρ cp / k) associated with the 

high casting speed (Vc) and low thermal conductivity (k) of steel continuous casting makes axial 

conduction negligible relative to axial advection [33,20].  Thus, the same simple slice domain that 

moves with the strand in a Langrangian frame of reference can be used for both the heat transfer 

and mechanical computations.  Fig. 4 shows the domain and boundary conditions for both 

models. An instantaneous interfacial heat flux profile that varies with time down the mold 

according to mold thermocouple measurements [20] is given in Fig. 5, and is applied at the left 

edge of the domain. Due to the large width (x) of the casting compared to the thickness (y) of this 

simple domain, a second generalized plane strain state is applied in the y direction.  This 

condition was imposed by coupling the displacements of all nodes along the bottom edge of the 



slice domain.  This was accomplished using the *EQUATION option in ABAQUS [3], and the 

CP command in ANSYS [7]. The normal (x) displacement of all nodes along the bottom edge of 

the domain is fixed to zero. Tangential stress was left equal zero along all surfaces.  Finally, the 

ends of the domain are constrained to remain vertical, which prevents any bending in the xy 

plane.  

Temperature-dependent properties were chosen for %0.27C plain mild-carbon steel with 

Tsol=1411.79 oC and Tliq=1500.72 oC (solidus and liquids temperatures).  The enthalpy curve used 

to relate heat content and temperature in this study, H(T), is shown in Fig. 6.  It was obtained by 

integrating the specific heat curve fitted from measured data of Pehlke et. al. [34]. While this 

enthalpy data is input directly into ANSYS, ABAQUS tracks the latent heat Hf=257,867 J/kg 

separately from the specific heat cp, which is found from the slope of this H curve, except in the 

solidification region, where cp is found from [23] as follows 

 

( )p
liq sol

dH Hfc
dT T T

= −
−

        (16) 

 

The temperature dependent conductivity function for 0.27%C plain carbon steel is fitted from 

data measured by Harste [35], and is given in Fig. 7. The conductivity increases in the liquid 

region by a factor of 6.65 to partly account for the effect of convection due to flow in the liquid 

steel pool [36]. Density was assumed constant at this work, 7400 kg/m3, in order to maintain 

constant mass. 

The temperature-dependant coefficient of thermal expansion )T(α  is calculated from the thermal 

linear expansion function TLE [20] with a reference temperature of To=1540 oC, and is given in 

Fig. 8.  An alternative, exactly-equivalent thermal-expansion function is included in this figure 

using a reference temperature of To=Tsol=1411.79 oC.    



Poisson ratio is 0.3 constant. Elastic modulus E generally decreases as the temperature increases, 

although its value at very high temperatures is uncertain. The temperature-dependent elastic 

modulus curve used in this model was fitted from measurements from Mizukami et. al. [37], as 

shown in Fig. 9. The liquid and mushy zone is modeled by lowering elastic modulus by three 

orders of magnitude. This method is easy to apply but can not model the generation of inelastic 

strain and stress in the liquid/mushy zone which is crucial for hot tearing prediction [20]. It also 

sometimes introduces a numerical ill-conditioning of the global stiffness matrix after finite-

element assembly which might be a problem for sparse linear solvers. Other more sophisticated 

liquid/mushy models have been proposed by Zhu [2], Li [20], and Koric [4]. 

A 20 sec. simulation was performed, which corresponds to a 670 mm long shell of steel cast at a 

casting speed of 2 m/min.  The heat transfer analysis is run first to get the temporal and spatial 

temperature field. Stress analysis is then run using this temperature field. The domain used in 

both codes has a single row of 300 plane 4-node elements in both thermal and stress analysis. A 

formal study of mesh and time increment refinement was conducted by Zhu [2], which shows that 

the 300-node mesh used here is more than sufficient to achieve accuracy within 1% error with a 

fixed time increment of 0.01 sec (1000 time increments per 10 s) compared to the analytical 

solidification solution for the elastic-perfectly plastic material [38]. 

 

7. Results and Discussion  

 

The temperature results predicted with ABAQUS and ANSYS are in excellent agreement, as 

shown in Figs. 10 and 11.  Considering that the two codes employ different forms of thermal 

parameters (H and k in ANSYS; and Tsol, Tliq, Hf, and k in ABAQUS), this shows that both sets of 

thermal material properties are consistent.  Furthermore, the two numerical implementations are 

equivalent.  



The temperature gradient through the shell is almost linear from near the solidification front to 

the cooled surface and it gradually drops as solidification proceeds. The typical cooling histories 

for two material points in Fig. 11 each show the classic drop in cooling rate as each point beneath 

the surfaces passes through the “mushy region” between the solidus and liquidus temperatures.  

The solidification front grows roughly parabolically with time, which matches both theoretical 

expectations and plant measurements [33]. 

The total lateral (y) shrinkage strain history given in Fig. 12 for the bottom edge nodes also shows 

a very good agreement between 2 models.  This shrinkage displacement is the same across the 

entire domain, and shows the decrease in the average width of the solidifying shell, which is 

accommodated in practice by tapering the mold walls.  This result represents a prediction of ideal 

taper, and shows that more taper is needed near the beginning of solidification in the top region of 

the mold.  This calculation is relatively insensitive to the constitutive model, because the 

shrinkage is predominantly thermal strain, and can be reasonably approximated by simple thermal 

strain calculations [39].  

The stress predictions, given in Figs. 13 - 14 match reasonably well at early times, but start to 

diverge with increasing time.  For both models, the faster cooling of the interior relative to the 

surface region naturally causes interior contraction and tensile stress, which is offset by 

compression at the surface.   The Anand model underpredicts both the compressive surface stress 

and the internal tensile peak.  This finding is consistent with the stress underprediction from Fig. 

1 as well as with the axial stress results from the in-house code of Huespe at al. [10] for round 

billet casting under different conditions.  These results indicate the earlier observed differences 

between the two constitutive models, which increase with decreasing temperature. Qualitatively, 

however, both models reasonably predict thermal-mechanical behavior during solidification, and 

can provide insights into casting processes. 

Finally, the wall clock times of the two codes in this work are comparable.  The Anand model 

with ANSYS was faster, taking 3.5 min, versus 5.5 min. for the Kozlowski / Zhu model with 



ABAQUS.  Both simulations were performed on the IBM p690 platform with a Power 4, 1.3 GHz 

CPU.  

 

8. Conclusions  

 

Temperature and stress in a solidifying slice through a realistic steel continuous caster are 

predicted with two different elastic-visco-plastic constitutive laws for plain-carbon steel using 

two commercial finite-element programs.  The Anand law is integrated by the Euler-Backward 

method built into ANSYS. The results are compared with the Kozlowski model for austenite 

combined with the Zhu power-law model for delta-ferrite, integrated in ABAQUS with a local-

global integration scheme implemented via a user-defined UMAT subroutine.  

While the temperature and total strain results are in excellent agreement, the Anand model under-

predicts the peak stresses in both compression and tension.  The results are consistent with the 

tensile stress comparisons in Fig. 1 as well as the findings of previous work [10] using an in-

house code. The Anand model with ANSYS qualitatively predicts the expected thermal-

mechanical behavior with the least CPU time.  However, the Kozlowski / Zhu model has been 

validated with experimental measurements, accurately incorporates steel grade dependency, 

needs no adjustable parameters to be defined, and can utilize the generalized plane-strain 

condition in ABAQUS.  In addition, only the Kozlowski / Zhu model correctly predicts the 

weakening behavior of delta ferrite, which forms near the solidification front in low carbon steels.  

In conclusion, both ANSYS and ABAQUS enable modeling of complex realistic casting 

phenomena including variable interfacial gap heat transfer, ferrostatic pressure from the liquid, 

thermo-mechanical contact between the mold and strand, mold taper, and complex three-

dimensional geometric features.  Two efficient and convenient approaches are available to 



investigate thermal-mechanical behavior involving the solidification of steel, especially while in 

the austenite phase. 
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Figures and Tables 

 

Fig. 1. Tensile stress curves calculated with Kozlowski and Anand models for various carbon 
content and compared to Wray experimental data  

 
Fig. 2. Constititutive model comparison with Wray experimental data for low carbon steel, 

showing mechanically weaker delta ferrite phase   



 
Fig. 3. Solidifying slice 

 

 
Fig. 4.  Mechanical and thermal finite element domains 

 



 
Fig. 5. Instantaneous interfacial heat flux 

 
Fig. 6. Enthalpy for 0.27 %C plain carbon steel 

 



 
Fig. 7. Thermal conductivity for 0.27%C  plain carbon steel 

 
Fig. 8. Coefficient of thermal linear expansion for 0.27%C plain carbon steel, reference 

temperatures: To=1540 oC and To=1411.7 oC 
 



 
Fig. 9. Elastic modulus for plain carbon steel 

 
Fig. 10. Temperature distribution along the solidifying slice in continuous casting mold 



 
Fig. 11. Temperature history for the surface material point and the material point 5 mm from the 

surface 

 
Fig. 12. Lateral  shrinkage  history of the bottom edge nodes 



 
Fig. 13. Lateral (y) stress distribution along the solidifying slice in continuous casting mold 

 
Fig. 14. Lateral (y) stress history for the surface material point and the material point 5 mm from 

the surface 
 
 



Parameter Value 

so 43 MPa 

QA 32514 K 

A 1.E11 

ξ  1.15 

m 0.147 

ho 1329 MPa 

s  147.6 MPa 

n 0.06869 

a 1 

 

Table1 Parameters used in the Anand material model for 1030 steel 

 

Parameter Value 

Steel Casting Speed 2.2 m/min 

Working Mold Length 670 mm 

Carbon Content 0.27 %C 

Initial Temparature 1540 oC 

Liquidus Temperature 1500.70 oC 

Solidus Temperature 1411.79 oC 

Ref. Temperature for Thermal  Expansion 1540 oC 

Density 7400 kg/m3 

Poisson’s Ratio 0.3 

Table 2. Casting Conditions 



 Nomenclature 
 

A m2  Surface 

AA 1/sec  Anand Pre-Exponential Factor   

TA  m2  Temp.-Prescribed Surface  

qA  m2  Flux-Prescribed Surface  

hA  m2  Convection-Prescribed Surface 

uA  m2  Displacement-Prescribed Surface 

AΦ  m2  Traction-Prescribed Surface 

a   Anand Strain Rate Sensitivity of Hardening or Softening 

b N  Volumetric Force Vector 

pc  J/kgK  Specific Heat 

D  N/m2  4th Order Elasticity Tensor. 

E N/m2  Elastic Modulus 

f 1/ses  Viscoplastic Law Function 

fc MPa-f3s-1  Empirical Constant in Kozlowski III law 

cfδ    Empirical Constant in Enhanced Power Delta law 

f1 MPa  Empirical Constant in Kozlowski III law 

f2   Empirical Constant in Kozlowski III law 

f3   Empirical Constant in Kozlowski III  

H J/kgK  Enthalpy   

Hf J/kgK  Latent Heat 

h W/m2K General Film Coefficient 

ho N/m2  Anand hardening/softening constant 

I    4th Order Identity Tensor 

I    2nd Order Identity Tensor  

k W/mK  Thermal Conductivity 

Bk  N/m2  Bulk Modulus 

L m  Characteristic Axial Casting Length  

m,n    Empirical constants used power delta law 

m   Anand Strain Rate Sensitivity of Stress 



n   Anand Strain Rate Sensitivity of Saturation 

n    Surface Unit Vector 

q̂  W/m2  Prescribed Heat Flux  

Q,QA        K            Activation Energy Constants 

s          N/m2  Anand Deformation Resistance 

s  N/m2  Anand Saturation Value for s 

so N/m2  Anand Initial Value for s 

T oC,K  Temperature 

T̂  oC  Prescribed BC Temp.  

T∞  oC  Ambient Temperature 

initT  oC  Initial  Temperature.  

OT  oC  Reference Temperature 

solT  oC  Solidus Temp. 

liqT  oC  Liquidus Temp. 

TLE   Thermal Linear Expansion 

u,d m  Displacement Vector 

V m3  Volume 

Vc m/min  Casting Speed 

x m  Position Vector  

z  m  Distance Bellow Meniscus  

α  1/oC  Coefficient of Thermal Expansion 

ijδ    Kronecker’s Delta 

ε    Total Strain Tensor 

ε  1/sec  Total Strain Rate Tensor  

εel    Elastic Strain Tensor 

εel  1/sec  Elastic Strain Rate Tensor 

εie    Inelastic Strain Tensor 

εie  1/sec  Inelastic Strain Rate Tensor  

ieε  1/sec  Equivalent Inelastic Strain  

thε    Thermal Strain Tensor 



thε  1/sec  Thermal Strain Rate Tensor 

μ  N/m2  Shear Modulus  

σ  N/m2  Stress Tensor - small strain formulation 

'σ          N/m2                 Deviatoric Stress Tensor 
*σ  N/m2  Trial Stress Tensor 

σ  N/m2,MPa Equivalent Stress 

ρ  kg/m3  Density 

μ  N/m2  Shear Modulus 

ξ    Anand Multiplier of Stress 

Φ  N/m2  Surface Traction Vector 

%C   Percentage Carbon in the steel  

 

 




